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Abstract

Noninvasive behavioral tracking of animals is crucial for many scientific inves-
tigations. Recent transfer learning approaches for behavioral tracking have con-
siderably advanced the state of the art. Typically these methods treat each video
frame and each object to be tracked independently. In this work, we improve on
these methods (particularly in the regime of few training labels) by leveraging the
rich spatiotemporal structures pervasive in behavioral video — specifically, the
spatial statistics imposed by physical constraints (e.g., paw to elbow distance),
and the temporal statistics imposed by smoothness from frame to frame. We pro-
pose a probabilistic graphical model built on top of deep neural networks, Deep
Graph Pose (DGP), to leverage these useful spatial and temporal constraints, and
develop an efficient structured variational approach to perform inference in this
model. The resulting semi-supervised model exploits both labeled and unlabeled
frames to achieve significantly more accurate and robust tracking while requiring
users to label fewer training frames. In turn, these tracking improvements enhance
performance on downstream applications, including robust unsupervised segmen-
tation of behavioral “syllables,” and estimation of interpretable “disentangled”
low-dimensional representations of the full behavioral video. Open source code is
available at https://github.com/paninski-lab/deepgraphpose.

∗equal contribution
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1 Introduction

Animal pose estimation (APE) is a critical scientific task, with applications in ethology, psychology,
neuroscience, and other fields. Recent work in neuroscience, for example, has emphasized the degree
to which neural activity throughout the brain is correlated with movement [1, 2, 3]; i.e., to understand
the brains of behaving animals we need to extract as much information as possible from behavioral
video recordings. State of the art APE methods, such as DeepLabCut (DLC) [4], DeepPoseKit
(DPK) [5], and LEAP [6], have transferred tools from human pose estimation (HPE) in deep learning
literature to the APE setting [7, 8], opening up an exciting array of new applications and new scientific
questions to be addressed.

However, even with these advances in place, hundreds of labels may still be needed to achieve
tracking at the desired level of precision and reliability. Providing these labels requires significant
user effort, particularly in the common case that users want to track multiple objects per frame (e.g.,
all the fingers on a hand or paw). Unlike HPE algorithms [9], APE algorithms are applied to a wide
variety of different body structures (e.g., fish, flies, mice, or cheetahs) [10], compounding the effort
required to collect labeled datasets and hindering our ability to re-use a common skeletal model.
Moreover, even with hundreds of labels, users still often see occasional “glitches” in the output (i.e.,
frames where tracking is briefly lost), which typically interfere with downstream analyses of the
extracted behavior.

To improve APE performance in the sparse-labeled-data regime, we propose a probabilistic graphical
model built on top of deep neural networks, Deep Graph Pose (DGP), to leverage both spatial and
temporal constraints, and develop an efficient structured variational approach to perform inference
in this model. DGP is a semi-supervised model that takes advantage of both labeled and unlabeled
frames to achieve significantly more accurate and robust tracking, using fewer labels. Finally, we
demonstrate that these tracking improvements enhance performance in downstream applications,
including robust unsupervised segmentation of behavioral “syllables,” and estimation of interpretable
low-dimensional representations of the full behavioral video.

2 Related Work

Animal pose estimation. The proposed approach fills a void between state of the art human pose
estimation algorithms, which often rely on large quantities of manually labeled samples (see [9] for a
recent review), and their counterparts in animal pose estimation [11, 4, 6, 5, 12, 13]. Among these
animal pose estimation algorithms, DLC [4], LEAP [6], and DPK [5] stand out as they can achieve
near human-level accuracy. However, all these methods rely on a large number of human labels in
order to achieve the desired level of precision and reliability. Our work extends such models with
a probabilistic graphical model that use unlabeled frames and temporal and spatial structures. [14]
has recently proposed to incorporate temporal context from nearby video frames using optical flow
which occurs only at the test stage to refine the model’s predictions. However, in our approach, we
incorporate the temporal context into the trainable graphical model.

Graphical models. Previous work on human pose estimation has employed graphical models as
regularizers for convolutional networks [15, 16, 17, 18, 19, 20]. Among these, [17] and [18], like
DGP, build an undirected graphical model (UGM) on top of deep neural networks. However, unlike
DGP, they assign tracked locations discrete values, which allows for (discrete) message passing
algorithms during the inference step. [19] builds a spatial-temporal graph similar to DGP. But none
of these previous methods uses unlabeled frames to improve performance, as DGP does. They were
all proposed for human pose estimation which has many benchmark datasets with a large number
of labels. [20] has proposed a method later for sparsely-labeled videos but without any spatial
constraints.

Semi-supervised learning. Semi-supervised learning aims to fully utilize unlabeled or weakly-
labeled data to gain additional insights into the structure of the data [21, 22, 23]. Many pose
estimation algorithms have adopted such learning schemes to enhance the performance given limited
training data [24, 25]. One conceptually similar “weakly-supervised” approach is described by
[26], who trained a network to extract flying objects (obeying Newtonian acceleration) simply by
constraining the output to resemble a parabola. In our work, DGP encourages the output confidence
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Figure 1: Deep Graph Pose (DGP)
model. DGP leverages observed (labeled)
and hidden information to infer the loca-
tions of unobserved targets via graph semi-
supervised inference. At each time t, we
observe the frame xt. We want to track
multiple targets in each frame (in this case,
the paw and elbow). We also observe the
labels of the two targets in some frames (in
this example, in the t-th frame), denoted
as yt,1 and yt,2 (colored circles at t). The
hidden variables are the unobserved targets
(indicated with colored circles in the col-
ored background in frames t− 1 and t+ 1
here).

map to be unimodal; this can be seen as a form of weak supervision that leads to improved accuracy
even when the temporal and spatial soft constraints are removed.

3 Model

The graphical model of DGP is summarized in Figure 1. We observe frames xt indexed by t, along
with a small subset of labeled markers yt,j (where j indexes the different targets we would like
to track). The target locations yt,j on most frames are unlabeled, but we have several sources of
information to constrain these latent variables: temporal smoothness constraints between the targets
yt,j and yt+1,j , which we capture with potentials φt; spatial constraints between the targets yt,i and
yt,j , which we model with spatial potentials φs; and information from the image xt, modeled by φn.

We parametrize φn with a neural network, indicated by the subscript n. A number of architectures
could potentially be employed for φn [6, 5]; we chose to adapt the architecture used in DLC [4] here.

For simplicity, we start with a quadratic potential φt to impose temporal smoothness:

φjt (yt,j , yt+1,j) =
1

2
wjt ||yt,j − yt+1,j ||2, (1)

which penalizes the distance between targets in consecutive frames; the weights wjt in general may
depend on the target index j, and can also vary in time. A quadratic potential is equivalent to
modeling the target at the next time step as normally distributed around the current target, which
is also equivalent to Gaussian random walk. We will discuss extensions of this simple quadratic
potential in the appendix.

The spatial potential φs is more dataset-dependent and can be chosen depending on the constraints
that the markers should satisfy. Typical examples include a soft constraint that the paw marker should
not exceed some distance from the elbow marker, or the nose should always stay within a certain
radius of a static waterspout. Again, we start with a simple quadratic potential to encode these soft
constraints:

φijs (yt,i, yt,j) =
1

2
wijs ||yt,i − yt,j ||2, (2)

which penalizes the distance between “connected” targets yt,i and yt,j (where the user can pre-specify
pairs of connected targets that should have neighboring locations in the frame, e.g. paw and elbow);
more sophisticated non-quadratic losses are again discussed in the appendix.

We want to “let the data speak” and avoid oversmoothing, so the penalty weights ws and wt should
be small. In practice we found that the temporal weights wjt could be set using optical flow [27]
which captures the vector field between adjacent frames. We first computed the vector field between
two neighbor frames t− 1 and t using optical flow. Then we calculated the average motion vector
for target j from frame t − 1 to frame t. The magnitude of the motion vector was denoted as mj

t .
Finally wjt = ξ/mj

t , where ξ is a constant scalar independent of dataset, time and target indices. The
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intuition is the larger the movement of the target is, the smaller the temporal clique weight should be.
We set the spatial weights as wijs = c/dij , where dij is a rough estimate of the average distance (in
pixels) between targets i and j and c > 0 is a small scalar (again independent of dataset and target
indices i, j), which led to robust results without any need to fit extra parameters. We summarize the
parameter vector as β = {θ, wt, ws}, where θ denotes the neural net parameters in φn. Given β, the
joint probability distribution over targets y is

p(y|x, β) =
1

Z(x, β)
exp

(
−

T∑
t=1

J∑
j=1

φjn(yt,j , xt)

−
T−1∑
t=1

J∑
j=1

φjt (yt,j , yt+1,j)−
T∑
t=1

∑
i,j∈E

φijs (yt,i, yt,j)

)
,

(3)

where E denotes the edge set of constrained targets (i.e., the pairs of markers i, j with a nonzero
potential function), Z(x, β) =

∫
p(y|x, β)dy is the normalizing constant marginalizing out y, T

denotes the total number of frames, and J denotes the total number of targets.

4 Structured variational inference

Our goal is to estimate p(yh | yv, x, β), the posterior over locations of unlabeled targets yh, given
the frames from the video x, the locations of the labeled markers yv, and the parameters β. Here
h denotes hidden, for the unlabeled data, and v denotes visible, for the labeled data. Calculating
this posterior distribution exactly is intractable, due to the highly nonlinear convolutional networks
appearing in potentials φn. We chose to use structured variational inference [28, 29] to approximate
this posterior. We approximate p(yh, yv | x, β) with a Gaussian graphical model (GGM) with the
same graphical model as Figure 1, leading to a Gaussian posterior approximation q(yh | yv, x, β)
for p(yh | yv, x, β) in which the inverse covariance (precision) matrix is block tridiagonal (Gaussian
random walk), with one block per frame t. Since the potentials φt and φs are quadratic, yielding
Gaussian distributions, the neural-network image potential φn is the only term that needs to be
replaced with a new quadratic potential to form a Gaussian q.

Updating the parameters of this GGM scales as O(TJ3) in the worst case, due to the chain structure
of the graphical model (and the corresponding block tridiagonal structure of the precision matrix). If
the edge graph E defined by the user-specified spatial potential function set is disconnected, this J3

factor can be replaced by K3, where K is the size of the largest connected component in E .

We used a structured inference network approach [29] to estimate the model and variational param-
eters. We computed gradients of the evidence lower bound (ELBO) for this model using standard
automatic differentiation tools, and performed standard stochastic gradient updates to estimate the
parameters. Full details regarding the ELBO derivation and optimization can be found in Section S1
in the appendix.

4.1 Conceptual comparison against fully-supervised approaches

Standard fully-supervised approaches like DeepLabCut [4] learn a neural network (or more precisely,
use transfer learning to adjust the parameters of an existing neural network) to essentially perform a
classification task: the network is trained to output large values at the known location of the markers
(i.e., the “positive” training examples), and small values everywhere else (the “negative” training
examples). Given a small number of training examples, these methods are prone to overfitting.

In contrast, the approach we propose here is semi-supervised: it takes advantage of both the labeled
and unlabeled frames to learn better model parameters θ. On labeled frames, the posterior distribution
p(yv | yv, x, β) is deterministic, and the objective function reduces to the fully supervised case. On
the other hand, on unlabeled frames we have new terms in the objective function (see section S1.2.1
for more details). Clearly, the spatial and temporal potentials φs and φt encourage the outputs to be
temporally smooth and to obey the user-specified spatial constraints (at least on average). But in
addition the objective function encourages φn to output large values where p(yh | yv, x, β) is large,
and small values where p(yh | yv, x, β) is small. Since we approximate p(yh | yv, x, β) as Gaussian,
the resulting ELBO encourages φn to be (on average) unimodal on unlabeled frames — a constraint
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Table 1: Dataset summary.

Dataset Brief
Description

Dimensions
(x, y, t)

Number of
labeled frames

mouse-wheel [30] moving a wheel (374, 450, 1000) 55
mouse-reach [31] grabbing a stick (747, 832, 256) 52
fly-run [32] running on a ball (600, 600, 1210) 13
twomice-top-down* freely moving (480, 640, 1364) 20
fish-swim [33] freely swimming (471, 475, 2000) 20
(*) unpublished
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Figure 2: Comparison of Deep Graph Pose (DGP) versus DeepLabCut (DLC) and manually-
labeled data on the mouse-wheel dataset from [30]; see also [34]. Left panels show an example
frame, with the DLC output markers superimposed in blue (top) and the DGP markers in red (bottom).
The right panels show the horizontal marker positions as a function of time (with DLC in blue,
DGP in red and the full manually-labeled trace in black). Vertical lines indicate labeled (training)
frames. The small inset images show confidence maps for each marker output by DLC (top) and
DGP (bottom); the DGP confidence maps tend to be more unimodal than the DLC confidence maps.
Note that the DLC and DGP marker locations tend to agree on labeled frames, but we see significant
discrepancies on unlabeled test frames. Visual inspection of the videos (and comparison again the
manual labels) indicates that when the DLC and DGP markers disagree, typically the DLC marker is
in the wrong location.

that is not enforced in standard approaches. This turns out to be a powerful regularizer and can lead
to significant improvements even in cases where the spatial and temporal constraints φs and φt are
weak, as we will see in the next section.

5 Results

We applied DGP and DLC2 to a variety of datasets, including behavioral videos from three different
species, in a variety of poses and environments (see Table 1 for a summary). The new model (DGP)
consistently outperformed the baseline (DLC). In each example video analyzed here, DLC outputs

2https://github.com/AlexEMG/DeepLabCut

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.08.20.259705doi: bioRxiv preprint 

https://github.com/AlexEMG/DeepLabCut
https://doi.org/10.1101/2020.08.20.259705
http://creativecommons.org/licenses/by-nc-nd/4.0/


-

Figure 3: Quantification of the results from Fig-
ure 2 over multiple training set sizes and abla-
tion experiments. DGP outperforms DLC and the
intermediate variant DGP-semi. We evaluated the
different methods (see main text for definition of
DGP-semi) using multiple random subsets of the
training set (55 labels) and compared the differ-
ences in test error. Error bars represent one stan-
dard error across five random trials. Each random
trial has its own randomly generated training set.

occasional “glitch” frames where tracking of at least one target was lost (e.g., around frame index
100 in the lower right panel); these glitches were much less prevalent in the DGP output. We
experimented with running Kalman smoothers and total variation denoisers to post-process the DLC
output, but were unable to find any parameter settings that could reliably remove these glitches
without oversmoothing the data (results not shown). The frequency of these “glitches” can be reduced
by increasing the training set through labeling more data — but this is precisely the user effort we
aim to minimize here. See the full videos summarizing the performance of the two methods. An
example screenshot for the mouse-wheel dataset [30] is shown in Figure 2. The comparison between
DLC and DGP on all other datasets can be found in Figures S3-S6 in the appendix. More information
regarding experimental setup can be found in Section S4 in the appendix.

We also examined the “confidence maps” generated by visualizing the output of the neural network
φn as an image; large values of the confidence map indicated the regions where the network “believed”
the target was located with high confidence. Comparing the confidence maps output by DLC versus
DGP, we see that the latter tended to be more unimodal (see Figure 2, small panels in the middle
column). Nonetheless, DGP did occasionally output multi-modal confidence maps (e.g., in frames
where the target was occluded), since the ELBO objective function used to train DGP encouraged
unimodality but did not impose unimodality as a hard constraint.

To better understand the source of the performance gains exhibited by DGP, we also experimented
with a model in which the spatial and temporal potentials were turned off (i.e., ws = wt = 0). The
resulting graphical model can be factorized over targets j and frames t. We call the resulting model
DGP-semi, since the resulting ELBO objective function combines a usual supervised loss (as in DLC)
with an unsupervised term that encourages the output of the image potential φn to match its Gaussian
approximation for each (t, j) pair (i.e., the resulting loss can be considered a semi-supervised hybrid
model). Comparing DLC, DGP-semi, and DGP provides a qualitative sense of the relative benefits of
the semi-supervised loss and the spatial and temporal cliques (see videos).

To develop more quantitative comparisons, we manually labeled 1000 frames in the mouse-wheel
dataset3. We randomly assigned 55 labeled frames to the training set and used the remaining 945
frames as the test set. Next we randomly subsampled 10%–90% of this training set and retrained
the models to quantify the relation between the test errors and the number of labeled frames. Figure
3 shows the test errors averaged over five random subsamples. We see that DGP-semi and DGP
outperformed DLC uniformly over the training set fractions (i.e., the number of labeled frames used
to train the model) with a significant amount of improvement. DGP further decreased the errors
with the extra spatial and temporal constraints. Similar results were obtained using an ε-insensitive
loss that ignored errors below a threshold ε (on the order of 5-10 pixels here) below which the “true”
marker location becomes somewhat subjective (results not shown here).

From both qualitative and quantitative analyses, we can tell that although DGP-semi does not enforce
any spatial constraints or temporal smoothness, the extra regularization from the unsupervised term

3This exhaustive labeling was labor-intensive and we have not yet performed the same analysis for the other
datasets in Table 1. As is visible in the appendix figures, our qualitative results are similar across all the datasets
analyzed here; we plan to perform more exhaustive comparisons on other datasets in the future.
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Figure 4: (A) Unsupervised methods segment DGP traces into interpretable “resting” versus
“moving” states, while DLC trace segmentation is hampered by glitches. We ran a two-state
autoregressive hidden Markov model (ARHMM) on the DGP and DLC outputs (in this case, on
the x- and y-coordinates of a single paw). Background colors indicate the inferred states from the
ARHMM fit to the DGP or DLC traces. The model fit with the DGP output clearly learns interpretable
states, a “resting” state (red) and a “moving” state (green) (bottom). The model fit with the DLC
output learns two states that are partially corrupted by “glitches” where DLC jumps away from
the manually-labeled paw position (bottom); see video for full details. (B) Conditioning CAEs on
DGP markers improves reconstruction performance. We computed mean square error (MSE) per
pixel on reconstructed test frames from the mouse-wheel dataset when using a CAE (gray bars), or
conditional CAEs, where the markers output by DLC (blue) or DGP (red) are used as input to both
the encoder and decoder networks. A latent dimension of 0 corresponds to directly decoding the
frames from markers. We see that test MSE decreases with latent dimensionality (as expected), and
that the model conditioned on DGP markers consistently outperforms the model conditioned on DLC
markers. Error bars represent 95% bootstrapped confidence interval over test frames. Reconstruction
videos are also available.

in the ELBO encourages the model output to be more unimodal, leading to significantly improved
predictions compared to DLC. With the additional temporal and spatial constraints, DGP can further
improve the performance.

5.1 Downstream analyses

The above results demonstrate that DGP provides improved tracking performance compared to DLC.
Next we show that these accuracy improvements can in turn lead to more robust and interpretable
results from downstream analyses based on the tracked output.

Unsupervised temporal segmentation. We begin with a segmentation task: given the estimated
trace for the paw, can we use unsupervised methods to determine, e.g., when the paw is moving versus
still? Figure 4A shows that the answer is yes if we use the DGP output: a two-state auto-regressive
hidden Markov model (ARHMM; fit via Gibbs sampling on 1000 frames output from either DGP
or DLC; [35]) performs well with no further pre- or post-processing. In contrast, the multiple DLC
“glitches” visible in Figure 2 contaminate the segmentation based on the DLC traces, resulting in
unreliable segmentation. See the video for further details. Similar results were obtained when fitting
models with more than two states (data not shown).

Conditional convolutional autoencoder (CAE) for more interpretable low-dimensional repre-
sentation learning. As a second downstream application, we consider unsupervised dimensionality
reduction of behavioral videos [3, 1, 36, 37]. This approach, which typically uses linear methods like
singular value decomposition (SVD), or nonlinear methods like convolutional autoencoders (CAEs),
does not require user effort to label video frames. However, interpreting the latent features of these
models can be difficult [38, 39], limiting the scientific insight gained by using these models. A hybrid
approach that combines supervised (or semi-supervised) object tracking with unsupervised CAE
training has the potential to ameliorate this problem [40, 41, 42, 43] – the tracked targets encode
information about the location of specific body parts, while the estimated CAE latent vectors encode
the remaining sources of variability in the frames. We refer to this ideal partitioning of variability into
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Figure 5: Conditioning CAEs on DGP markers, but not DLC markers, leads to disentangled
latents. We incorporated the DLC and DGP markers into conditional CAEs trained on the mouse-
wheel dataset. All frames are generated from 2-latent networks. Left: frames generated from the
CAEs when changing the x and y coordinates of the left paw marker (yellow circle) for a given
frame, with all other latents/markers fixed (white bounding box denotes the range of x/y coordinates).
This manipulation should lead to noticeable changes in left paw position if markers are disentangled
from latents. The network trained with DGP markers affords a much higher degree of control and
produces more realistic looking images than that trained with DLC. Center: frames generated from
the CAEs when changing the latents, with all markers fixed (white bounding box denotes the crop
used for the right panels). This manipulation should not change the left paw position, but rather vary
other (untracked) features of the image. Changes in the DGP reconstructions are limited to a small
region around the tracked paws (yellow circle denotes left paw marker; see right panels for crop),
demonstrating that the latents are encoding more local information such as paw configuration. DLC
reconstructions show undesirable large movements of the left paw, demonstrating that the latents
are encoding information about this tracked body part that should be present in the markers. Right:
zoom of cropped region around the original paw location for frames in the center panel. See appendix
Figure S1 for a more detailed quantitative analysis of latent/marker disentanglement.

more interpretable subspaces as “disentangling.” Below we show that these hybrid models produce
features that are more disentangled when trained with the output from DGP compared to DLC.

We fit conditional CAEs that take the markers output by DLC or DGP (hereafter referred to as
CAE-DLC and CAE-DGP, respectively) as conditional inputs into both the encoding and decoding
networks of the CAE, using the mouse-wheel dataset with 13 randomly chosen labeled frames (see
Section S2 for implementation details). For this analysis, to obtain useful information across the
full image, we labeled the left paw, right paw, tongue, and nose, rather than the four fingers on the
left paw as in the previous section. Incorporating the tracking output from either method decreases
the mean square error (MSE) of reconstructed test frames, for a given number of latents (Figure
4B). Furthermore, the networks trained with DGP outputs show improved performance over those
trained with DLC outputs. Subsequent analyses are performed on the 2-latent networks, for easier
visualization.
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To test the degree of disentanglement between the CAE latents and the DGP or DLC output markers,
we performed two different manipulations. First, we asked how changing individual markers affects
the CAE reconstructions. We manipulate the x/y coordinates of a single marker while holding all
other markers and all latents fixed. If the markers are disentangled from the latents we would expect
to see the body part corresponding to the chosen marker move around the image, while all other
features remain constant. We randomly chose a test frame and simultaneously varied the x/y marker
values of the left paw (Figure 5, left). This manipulation results in realistic looking frames with clear
paw movements in the CAE-DGP reconstructions, demonstrating that this marker information has
been incorporated into the decoder. For the CAE-DLC reconstructions, however, this manipulation
does not lead to clear movements of the left paw, indicating that the decoder has not learned to use
these markers as effectively (a claim which is also supported by the higher MSE in the CAE-DLC
networks, Figure 4B).

Second, we asked how changing the latents (rather than markers) affects the reconstructed frames.
In this manipulation we simultaneously change the values of the two latents while holding all
markers fixed. If the latents are disentangled from the markers we expect to see the tracked features
remain constant while other untracked features change. For the CAE-DGP network this latent
manipulation has very little effect on the tracked body parts, as desired (Figure 5, top center); instead,
the manipulation leads to small changes in the configuration of the left paw (rather than its absolute
location; Figure 5, top right). On the other hand, for the CAE-DLC network this latent manipulation
has a large effect on the left paw location (Figure 5, bottom center), which should instead be encoded
by the markers. These results qualitatively demonstrate that the CAE-DGP networks have better
learned to disentangle the markers and the latents, a desirable property for more in-depth behavioral
analysis. Furthermore, we find through an unbiased, quantitative assessment of disentangling, that
using DGP markers in these models leads to higher levels of disentangling between latents and
markers than DLC across many different animal poses present in this dataset (see Figure S1).

6 Discussion

In this work, we proposed a probabilistic graphical model built on top of deep neural networks, Deep
Graph Pose (DGP), which leverages the rich spatial and temporal structures pervasive in behavioral
videos. We also developed an efficient structured variational approach to perform inference in this
model. The resulting semi-supervised model exploits information from both labeled and unlabeled
frames to achieve significantly more accurate and robust tracking, using fewer labels. Our results
illustrate how the smooth behavioral trajectories from DGP lead to improved downstream applications,
including the discovery of behavioral “syllables,” and interpretable or “disentangled” low-dimensional
features from the behavioral videos.

An important direction for future work is to optimize the code to perform online inference for
real-time experiments, as in [44]. We are currently integrating DGP on the “Neuroscience Cloud
Analysis as a Service" (NeuroCAAS) platform [45], to help enable more scalable and reproducible
analyses. Another important direction for future work is to extend our method to operate in 3D, fusing
information from multiple cameras. Our variational inference approach should be extensible to this
case, using similar epipolar constraints as in [25, 46] (using different inference approaches) to perform
semi-supervised inference across views. In addition, [4, 5, 6] all use slightly different architectures
and achieve similar accuracies. We plan to perform more experiments with the architectures from
[5, 6] in the future. Finally, we would like to incorporate our model into existing toolboxes and GUIs
to facilitate user access.
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Broader Impact

We propose a new method for animal behavioral tracking. As highlighted in the introduction and
in [10], recent years have seen a rapid increase in the development of methods for animal pose
estimation, which need to operate in a different regime than methods developed for human pose
estimation. Our work significantly improves the state of the art for animal pose estimation, and thus
advances behavioral analysis for animal research, an essential task for scientific discovery in fields
ranging from neuroscience to ecology. Finally, our work represents a compelling fusion of deep
learning methods with probabilistic graphical model approaches to statistical inference, and we hope
to see more fruitful interactions between these rich topic areas in the future.
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S1 Expanded methods

In this section we present our model and inference approach in fuller detail than was possible given
space limitations in the main text. (To maintain the logical flow, in some cases we repeat points that
were made in the main text methods.)

S1.1 Deep Graph Pose model

The graphical model of DGP is summarized in Figure 1. We observe frames xt indexed by t, along
with a small subset of labeled markers yt,j (where j indexes the different targets we would like
to track). The target locations yt,j on most frames are unlabeled, but we have several sources of
information to constrain these latent variables: temporal smoothness constraints between the targets
yt,j and yt+1,j , which we capture with quadratic potentials φt; spatial constraints between the targets
yt,i and yt,j , modeled with quadratic potentials φs; and information from the image xt, modeled by
potentials φn parametrized by neural networks.

First let’s define the potential function φn between the input image x and the target’s 2D location
y. We define fθ(·) as a stack of a fixed pretrained ResNet-50 network and a trainable ConvNet
parametrized by θ. fθ(·) takes a frame x as the input and outputs a 2D affinity map image, which
ideally has a sharp peak at the most likely coordinates of the target. We then denote the sigmoid
function as σ(·), and refer to σ(fθ(x)) as a “confidence map.”

With the potential φn, our target is to match this 2D confidence map to a 2D Gaussian bump centered
at y by minimizing the sigmoid cross entropy. Now let’s define the Gaussian bump. We construct a
bivariate Gaussian function with mean y = [ym, yn] and variance l2. The Gaussian function at the
mth row and the nth column is

G(y, l2)mn =
1

2πl2
exp(− 1

2l2
(m− ym)2 − 1

2l2
(n− yn)2). (S4)

The variance parameter was set as l2 = 1 in practice.

The potential function φn for the mth row and the nth column entry in σ(fθ(x)) is defined as

φn(y, x)mn =
1

2
wn
(
−G(y, l2)mn · log(σ(fθ(x))mn)− (1−G(y, l2)mn) · log(1− σ(fθ(x))mn)

)
=

1

2
wn
(
−fθ(x)mn ·G(y, l2)mn + fθ(x)mn + log(1 + exp(−fθ(x)mn))

)
.

Summing over all entries in the confidence map, we get the neural network potential φn as

φn(y, x) =
∑
m,n

1

2
wn
(
−fθ(x)mn ·G(y, l2)mn + fθ(x)mn + log(1 + exp(−fθ(x)mn))

)
.

We will write everything in vector form hereafter. We define f as the vectorized fθ(x), define h as
the vectorized fθ(x) + log(1 + exp(−fθ(x))), and define G(y, l2) as the vectorized G(y, l2), which
is a function of mean y and variance l2. Thus, for each target j we can rewrite the j-th image-based
potential φjn as

φjn(yt,j , xt) =
1

2
wn(−f>t,jG(yt,j , l

2) + h>t,j1), (S5)

where j is the index for target j and t is the index for frame t.

We use a simple quadratic potential φt to impose temporal smoothness:

φjt (yt,j , yt+1,j) =
1

2
wjt ||yt,j − yt+1,j ||2, (S6)

which penalizes the distance between targets in consecutive frames; the weights wjt in general may
depend on the target index j, and can also vary in time. A more sophisticated version of the temporal
clique could be an L2 norm over the second or third order temporal difference, similar to optical flow.

The spatial potential φs is more dataset-dependent and can be chosen depending on the constraints
that the markers should satisfy. Typical examples include a soft constraint that the paw marker should
not exceed some distance from the elbow marker, or the nose should always stay within a certain
radius of a static waterspout. This can be achieved by a soft-thresholding quadratic loss, leading to
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a smooth pairwise potential between these two markers. Again, we start with a simple quadratic
potential to encode these soft constraints:

φijs (yt,i, yt,j) =
1

2
wijs ||yt,i − yt,j ||2, (S7)

which penalizes the distance between “connected” targets yt,i and yt,j (where the user can pre-specify
pairs of connected targets that should have neighboring locations in the frame, e.g. paw and elbow).

We want to “let the data speak” and avoid oversmoothing, so the penalty weights ws and wt should
be small. In practice we found that the temporal weights wjt could be set using optical flow [27]
which captures the vector field between neighbor frames. We first computed the vector field between
two neighbor frames t− 1 and t using optical flow. Then we calculated the average motion vector
for target j from frame t − 1 to frame t. The magnitude of the motion vector was denoted as mj

t .
Finally wjt = ξ/mj

t , where ξ is a constant scalar independent of dataset, time and target indices. The
intuition is the larger the movement of the target is, the smaller the temporal clique weight should be.
We set the spatial weights as wijs = c/dij , where dij is a rough estimate of the average distance (in
pixels) between targets i and j and c > 0 is a small scalar (again independent of dataset and target
indices i, j), led to robust results without any need to fit extra parameters.

We summarize the parameter vector as β = {θ, wn, wt, ws}, where θ denotes the neural net param-
eters. Given β and the full collection of images x, the joint probability distribution over targets y
is

p(y|x, β) =
1

Z(x, β)
exp

(
−

T∑
t=1

J∑
j=1

φjn(yt,j , xt)︸ ︷︷ ︸
neural network

−
T−1∑
t=1

J∑
j=1

φjt (yt,j , yt+1,j)−
T∑
t=1

∑
i,j∈E

φijs (yt,i, yt,j)︸ ︷︷ ︸
Gaussian graphical model

)
,

(S8)
where E denotes the edge set of constrained targets (i.e., the pairs i, j with a nonzero potential
function), Z(x, β) =

∫
p(y|x, β)dy is the normalizing constant marginalizing out y, T denotes the

total number of frames, and J denotes the total number of targets. The joint distribution can be
described as a combination of a neural network component and a probabilistic graphical model over
the latent variables (the unobserved targets y).

S1.2 Structured variational inference

Our goal is to estimate p(yh | yv, x, β), the posterior over locations of unlabeled targets yh, given
the frames from the video x, the locations of the labeled markers yv , and the parameters β. (Here h
denotes hidden, for the unlabeled data, and v denotes visible, for the labeled data.) Calculating this
posterior distribution exactly is intractable, due to the highly nonlinear potentials φn. We chose to
use structured variational inference, similar to [29], to approximate this posterior. We approximate
p(yh, yv | x, β) with a Gaussian graphical model (GGM) with the same graphical model as Figure 1.
We denote the approximate posterior as q(yh, yv|x, βq) (βq encodes variational parameters). To
obtain a fully Gaussian variational approximation, we replace the neural network potentials φjn with
quadratic terms

φ̂jn(yt,j , xt) =
1

2
wt,jn,q||yt,j − µt,jn (xt)||2. (S9)

Here the precision variables wt,jn,q and means µt,jn are variational parameters that we could optimize
over independently. However, we found it more efficient to model the means µn as µt,jn (xt) =∑
m,n αmnSoftmax(f jγ(xt))mn, where αmn = [m,n]. Here fγ(·) is an inference neural network

with parameters γ whose output is a 2D affinity map, similar to fθ(·). Putting the pieces together, we
have the fully Gaussian approximate posterior

q(yh, yv|x, βq) =
1

Ẑ(x, βq)
exp

(
−

T∑
t=1

J∑
j=1

φ̂jn(yt,j , xt)︸ ︷︷ ︸
inference network

−
T−1∑
t=1

J∑
j=1

φjt (yt,j , yt+1,j)−
T∑
t=1

∑
i,j∈E

φijs (yt,i, yt,j)︸ ︷︷ ︸
identical to equation S8

)
,

(S10)
where Ẑ(x, βq) is the normalizing constant (which can be computed explicitly, due to the fully-
Gaussian form of q), and βq = {γ,wn,q, wt, ws}.
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Since q(yh, yv|x, βq) is a GGM, we can rewrite eq. S10 in the standard Gaussian form

q(yh, yv|x, βq) = N (µa,Σa)

Σa = (Σ−1s + Σ−1t + Σ−1n )−1 (S11)

µa = ΣaΣ−1n µn (S12)

where Σ−1n , Σ−1t and Σ−1s are the precision matrices corresponding to the potentials in
q(yh, yv|x, βq); these have the form

Σ−1n =


w1,1
n,q 0 0 0 0 0
0 w1,2

n,q 0 0 0 0
0 0 w2,1

n,q 0 0 0
0 0 0 w2,2

n,q 0 0
0 0 0 0 w3,1

n,q 0
0 0 0 0 0 w3,2

n,q

 (S13)

Σ−1t =


w1
t 0 −w1

t 0 0 0
0 w2

t 0 −w2
t 0 0

−w1
t 0 2w1

t 0 −w1
t 0

0 −w2
t 0 2w2

t 0 −w2
t

0 0 −w1
t 0 w1

t 0
0 0 0 −w2

t 0 w2
t

 (S14)

Σ−1s =


ws −ws 0 0 0 0
−ws ws 0 0 0 0

0 0 ws −ws 0 0
0 0 −ws ws 0 0
0 0 0 0 ws −ws
0 0 0 0 −ws ws

 . (S15)

Thus the mean and covariance of the variational distribution q(yh, yv|x, βq) are µa and Σa, where
µa is a function of γ, wn,q , wt, and ws, and Σa is a function of wn,q , wt, and ws.

Let Ph and Pv denote the permutation matrices that map the vector y to yh and yv respectively, i.e.,

yh = Phy, yv = Pvy. (S16)

Due to the Gaussianity of the joint distribution, we can write down the closed-form expression for
q(yh | yv, x, βq) as

q(yh | yv, x, βq) = N (µh,Σh), (S17)

where

Σh = (PhΣ−1a P>h )−1, (S18)

µh = Phµa − (PhΣ−1a P>h )−1PhΣ−1a P>v (yv − Pvµa). (S19)
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S1.2.1 Evidence Lower Bound (ELBO)

Given the approximate posterior (eq. S17), and abbreviating q(yh) = q(yh | yv, x, βq), we can now
write down the evidence lower bound (ELBO) as

L = Eq(yh)[−log q(yh) + log p(yh, yv|x, β)]

= Eq(yh)[log p(yh, yv|x, β)] +H(q)

= −Eq(yh)

 T∑
t=1

J∑
j=1

φjn(yt,j , xt)

− Eq(yh)

T−1∑
t=1

J∑
j=1

φjt (yt,j , yt+1,j)

− Eq(yh)

 T∑
t=1

∑
i,j∈E

φijs (yt,i, yt,j)


− logZ(x, β) +H(q)

=

T,J∑
t=1,j=1
t,j∈V

wn
2

(−f>t,jG(yt, l
2) + h>t,j1) +

T,J∑
t=1,j=1
t,j∈H

wn
2

(−f>t,jG(µht, l
2 + Σhtt) + h>t,j1)

−Tr((Σ−1s + Σ−1t )P>h ΣhPh)− 1

2
Tr((P>h µh + P>v y

v)>(Σ−1s + Σ−1t )(P>h µh + P>v y
v))

− logZ(x, β) + log |Σa| − log |PvΣaP>v |, (S20)

where V and H denote the sets of visible targets in visible frames and hidden targets in all frames
respectively.

The bottlenecks of the ELBO computation in the full DGP model are ΣaΣ−1n µn, log |Σa|, and
diag(Σa), where Σa ∈ RTJ×TJ and Σ−1a is a block tridiagonal matrix. All of these terms can
be computed via message passing with O(TJ3) time complexity, due to the chain structure of the
graphical model (and the corresponding block tridiagonal structure of the precision matrix). We used
standard message passing algorithms to handle the required block tridiagonal matrix computations
[47, 48, 49].

S1.2.2 Semi-supervised DLC

To understand the various terms in the ELBO above it is helpful to start with a simpler special case.
If we turn off the temporal and spatial potentials in eq. S20 (i.e., set wt = ws = 0) we arrive at the
DGP-semi model discussed in the Results section. The corresponding ELBO is

L =

T,J∑
t=1,j=1
t,j∈V

wn
2

(−f>t G(yt, l
2) + h>t 1) +

T,J∑
t=1,j=1
t,j∈H

wn
2

(−f>t G(µht, l
2 + Σhtt) + h>t 1)

− logZ(x, β) + log |Σn| − log |PvΣnP>v |, (S21)

where Σh = (PhΣnP
>
h )−1 and µh = Phµn. The first term is a conventional DLC-type cross entropy

for labeled frames. The second term is a semi-supervised cross entropy for unlabeled frames. Instead
of having the true marker locations for unobserved frames, we construct the Gaussian function using
the 2D location output from the neural net. The second term encourages the confidence map fθ to be
unimodal to match the Gaussian approximate posterior. This semi-supervised term leads to better
performance of DGP-semi compared to the original fully-supervised DLC (Figure 3).

S1.3 Implementation details

There are a few issues regarding the optimization of the full DGP model that we considered during
the implementation:

• In eq. S20, the log normalization term logZ(x, β) involves an integration over all frames and
markers which makes the optimization intractable. In eq. S21, the graphical model factorizes over
markers j and frames t, which means that we can calculate the log normalization term logZ(x, β)
directly by summing over pixels for each t and j. But the summation over all pixels consumes a lot
of time. In practice, we found that dropping the logZ term did not affect the results significantly.
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• The optimization of the full ELBO involves two steps – expectation (E) and maximiza-
tion (M). We estimate a good q distribution in the E-step and optimize the network parameters given
the q distribution in the M-step. However, we found that in practice the E-step for the full DGP
model was very time-consuming and only marginally improved the performance. Thus during the
implementation, we simplified the q distribution by dropping the temporal and spatial cliques in
eq. S10, but still kept the full graph for p as in eq. S8. Equivalently, this simplified the ELBO as
well. The q distribution optimized in the E-step can now factorize over frames thus making the
computation a lot faster.

• With the simplified ELBO, the unknown parameters are {θ, γ, wn, wt, ws, wn,q}. γ and
wn,q are the unknown parameters we need to learn during the E-step. We found that setting γ = θ led
to good results and reduced the number of parameters. Moreover, optimizing wn,q didn’t significantly
improve the performance. Thus, for computational considerations, we decided to skip the E-step
and set wn,q = 1, which is a reasonable precision for the Gaussian bump, and set γ = θ. In the
M-step, we fixed wjt using optical flow which provided the vector field of the dynamics between
two neighbor frames, as described earlier. We set wijs = c/dij , where dij is the average distance (in
pixels) between targets i and j and c > 0 is a small scalar (independent of dataset and target indices
i, j); this led to robust results without any need to fit extra parameters. We also differentiated wn to
be wvn and whn for visible and hidden frames. Empirically, whn = 3 and wvn = 2whnT/Tv (Tv is the
number of visible frames) led to good results; this upweighted the strength of labeled frames relative
to unobserved frames. Therefore, the only parameter left is θ.

• When simplifying the objective function, we can get rid of the harsh contraints on the
form of the temporal and spatial cliques. The reason we choose both to be L2 norms as in eq. S6 and
S7 is that only L2 norms in the q distribution can lead to a closed-form expectation in the ELBO.
However, if we don’t consider these two cliques in the q distribution, we can allow arbitrary forms.
In the experiment, we still employed eq. S6 for the temporal clique, but employed a soft-thresholding
quadratic loss φijs (yt,i, yt,j) = 1

2w
ij
s Relu

[
||yt,i − yt,j ||2 − dij

]
for the spatial clique, where dij is

the average distance (in pixels) between targets i and j. This spatial clique penalizes two markers
when their distance is above the average distance calculated from the ground truth labels.

Therefore, the final objective function is

L(θ) =

T,J∑
t=1,j=1
t,j∈V

wn
2

(−f>t,jG(yt, l
2) + h>t,j1) +

T,J∑
t=1,j=1
t,j∈H

wn
2

(−f>t,jG(µht, l
2 + Σhtt) + h>t,j1)

−1

2

T−1∑
t=1

J∑
j=1

wjt ||µt,j − µt+1,j ||2 −
T∑
t=1

∑
i,j∈E

wijs Relu
[
||µt,i − µt,j ||2 − dij

]
, (S22)

where µt,j = yt,j if (t, j) is labeled; µt,j = µht,j otherwise. We maximized the above objective func-
tion and calculated the gradients for θ using standard automatic differentiation tools, and performed
standard stochastic gradient updates to estimate these parameters.

S2 Conditional convolutional autoencoder

S2.1 Implementation details

We fit conditional convolutional autoencoders (conditional CAEs) on 192x192 grayscale images from
[30]. In addition, we used 4 markers output by DLC/DGP: left paw, right paw, tongue, and nose.
To condition the encoder network on these values we turned each marker into a one-hot 2D array
and concatenated these with the corresponding frame, so that the input to the encoder was of size
(192, 192, 5). To condition the decoder network on these values we first centered the marker values
by subtracting their median (computed over the entire dataset) and then concatenated these values to
the latents before feeding them into the decoder. See Table S1 for network architecture details. We
trained the autoencoders by minimizing the MSE between original and reconstructed frames using
the Adam optimizer [50] with a learning rate of 10−4, a batch size of 100, and no regularization.
Models were trained for 300 epochs.
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Layer Type Channels Kernel Size Stride Size Zero Padding Output Size

0 conv 32 (5, 5) (2, 2) (1, 2, 1, 2) (96, 96, 32)
1 conv 64 (5, 5) (2, 2) (1, 2, 1, 2) (48, 48, 64)
2 conv 128 (5, 5) (2, 2) (1, 2, 1, 2) (24, 24, 128)
3 conv 256 (5, 5) (2, 2) (1, 2, 1, 2) (12, 12, 256)
4 conv 512 (5, 5) (2, 2) (1, 2, 1, 2) (6, 6, 512)
5 dense N NA NA NA (1, 1, N)
5 concatenate NA NA NA NA (1, 1, N+2M)
6 dense 36 NA NA NA (1, 1, 36)
7 reshape NA NA NA NA (6, 6, 1)
8 conv transpose 256 (5, 5) (2, 2) (1, 2, 1, 2) (12, 12, 256)
9 conv transpose 128 (5, 5) (2, 2) (1, 2, 1, 2) (24, 24, 128)

10 conv transpose 64 (5, 5) (2, 2) (1, 2, 1, 2) (48, 48, 64)
11 conv transpose 32 (5, 5) (2, 2) (1, 2, 1, 2) (96, 96, 32)
12 conv transpose 1 (5, 5) (2, 2) (1, 2, 1, 2) (192, 192, 1)

Table S1: Conditional CAE architecture for the mouse-wheel dataset using N latents and M markers
(each with an x and y value, for a total of 2M marker dimensions). Kernel size and stride size are
defined as (x pixels, y pixels); padding size is defined as (left, right, top, bottom); output size is
defined as (x pixels, y pixels, channels).

S2.2 Disentangling analysis

The disentangling analyses presented in Figure 5 require fixing some inputs to the network while vary-
ing others. Below we describe this manipulation in more detail. We performed these manipulations
on 2-latent networks to make visualization in the latent space easier.

Manipulating markers. We chose a random test frame and varied the x/y coordinates for a specific
marker (left paw). The limits of the x/y values were the 10th (minimum) and 90th (maximum)
percentiles of the DGP outputs on the test set for the specified marker. We did not allow different
limits for the DLC/DGP networks, in order to make the comparison more direct. After choosing
x/y values for the specified marker we converted these into a one-hot 2D array, as with the other
(unchanged) markers from the chosen frame. These one-hot 2D arrays were concatenated with the
original frame and then fed into the CAE encoder to produce the latents. The latents were then
concatenated with the median-subtracted marker values (one of which is being changed, the rest
of which stay the same). This vector was then pushed through the decoder network to produce the
reconstructions.

Note that in this conditional architecture the latents themselves are marker-dependent, so are not
truly held fixed. We also fit conditional CAE architectures where just the decoder was conditioned
on the markers, and the encoder only used the frame as input. We found the results from the
disentangling analysis to be qualitatively similar, though reconstructions generally looked cleaner
with the architectures that incorporated conditioning in both the encoder and decoder networks (data
not shown).

Manipulating latents. We chose a random test frame and this time varied the latents while keeping
the marker values fixed. Similar to above, we used the 10th (minimum) and 90th (maximum)
percentiles of the latents on the test set as limits (this time allowing different limits for each DLC/DGP
architecture). We then concatenated the new latent values with the marker values from the original
frame, and pushed this vector through the decoder network to produce the reconstructions.

Quantifying disentanglement. To quantify the disentanglement results from Figure 5 (center, right
panels), we chose the left paw as a (tracked) target of interest that should ideally not undergo large
changes when manipulating the latents. If disentanglement is high (which we desire), the differences
between the generated paw and the original paw should be small. For each image generated from the
latent manipulation, we take a small crop around the original location of the left paw and compute
the MSE between this generated paw and the original paw.
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Figure S1: Conditional CAEs display better disentangling properties when using DGP rather
than DLC markers. A: A total of 64 representative frames were chosen from the test set by
performing k-means on the 2-latent unconditional AE latents; pictured are 16 of those frames, which
include the left paw (the target feature of this analysis) in multiple positions. B: For each frame,
the markers are held fixed while the 2 latents are varied, producing a matrix of generated images.
For each generated image we crop around the left paw. The paw position should remain stable
throughout the latent manipulation if there is good disentanglement between latents and markers.
Latent manipulations of two example frames are shown (in columns) for networks trained using DGP
or DLC markers (in rows). Yellow circles indicate the left paw marker location. C: We compute
MSE between each generated frame and the original frame around the paw, and average over all
latent values. Small MSE indicates desired stability in the tracked paw. For almost all frames the
DGP-trained network exhibits lower MSE, thus demonstrating a higher degree of disentangling.

We repeat this process for an unbiased sample of test frames. To obtain these frames we performed
k-means clustering on the unconditional CAE latents. From each of 64 clusters we take the frame
that is closest to the cluster centroid (Figure S1A), and perform the process of generating frames by
evenly sampling the latent space - 4 grid points along each of 2 dimensions, for a total of 16 generated
frames. We compute the MSE in crops around the labeled paw position as described above (Figure
S1B, C). We find that on average the CAE-DGP networks have lower MSE, indicating that these
disentanglement results generalize to many other paw positions (and therefore marker values) found
in this dataset.
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Figure S2: Different active learning strategies
can speed up training of DGP without the need
to query for new human labels. Evolution of the
RMSE during training using four different scoring
strategies to query for pseudo targets (unlabeled
frames) on the twomice-top-down dataset. The
RMSE decays faster by employing active learning
strategies to select unlabeled frames to train DGP.

S3 Active learning

Given a video with a set N of frames, let M be the set of user-labeled frames, and let U = N −M
be the set of frames not selected to be labeled. Many previous animal pose estimation algorithms
select M ∈ N by applying k-means clustering to a randomly sampled subset of frames in the video,
and then uniformly sampling frames from these clusters. The number of clusters for k-means is
manually set usually as 10 or 25. Although this approach can work relatively well, several failure
modes can occur. For example, if the animals are in fixed positions or not moving for extended
periods of time (a common scenario in biological experimental settings), uniformly sampling frames
from such a video will result in selecting many identical or redundant frames. Furthermore, if the
frames of interest in the video—parts of the video where animals perform behaviors of interest to
experimenters—are sparse, randomly sampling frames from a video is highly likely to overlook
these frames. Additionally, even if the frames of interest are included during clustering, since these
frames are scarce, they may be considered as outliers by a naive k-means algorithm and there are
no guarantees that these frames of interest would be sampled from any clusters and selected for
downstream labeling or training steps.

This problematic lack of diversity in the training set can be addressed by fully supervised algorithms
by querying new labeled frames, i.e. by asking the user to manually label new frames based on
the performance of the network after training. This process can be repeated several times until
the network outputs are satisfactory. Previous work has shown that active learning by querying
informative and representative samples can be more effective than passive human labeling [51, 52].
Most of this work proposes strategies to score and sample unlabeled frames for manual labeling.

Here we propose to employ these strategies to select not only the set of frames to be manually
labeled by an experimenter or oracle M , but also to select the subset of unlabeled frames used during
training, S ∈ U , which provide additional information to semi-supervised algorithms such as DGP.
Unlike semi-supervised learning, which exploits what the learner thinks it knows about the data by
employing, for example, unlabeled frames with pseudo targets during training, active learning exploits
what the learner does not know about the data, by exploring the space or querying for information
about the unlabeled frames [53]. These two approaches can be combined naturally; see [53] for a
review.

Scoring Description

random Frames are sampled at random from video
motion Frames are sampled based on their motion energy; frames that are very

similar to their nearest neighbors are sampled less
Hwin Frames are sampled based on the difference between the entropy of mean

predictions and the mean entropy of predictions [54]
pmax Frames are sampled based on their uncertainty; frames with more uncer-

tain network outputs are re-sampled more frequently

Table S2: Scoring strategies for active learning
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We train DGP using the four different active learning strategies described in Table S2 to query for
pseudo targets (unlabeled frames) employed during training. Figure S2 illustrates the evolution of
the RMSE for a subset of hidden frames in the training set. We see that with active learning the loss
converges faster than by using random sampling. In future work we plan to investigate these different
active learning approaches in more detail and across additional datasets.

S4 Results on all datasets

Figures S3-S6 show the comparisons between DLC and DGP on the mouse-reach, fly-run, twomice-
top-down, and fish-swim datasets (Table 1). In each case, results were similar to those seen in Figure
2. Please check these videos to see the trace comparisons between DLC and DGP for these datasets.

We also did some additional experiments with the intermediate models between DLC and DGP,
including DLC-ours, DGP-semi and DGP-spatial described in Table S3.

Model Description

DLC original DLC implementation, binary target maps for cross entropy loss
DLC-ours our DLC implementation, gaussian target maps for cross entropy loss
DGP-semi DGP model without cliques, semi-supervised loss only

DGP-spatial DGP model with only spatial clique
DGP full DGP model with both spatial and temporal cliques

Table S3: All the models we ran for comparison.

Table S4 summarizes the experimental setup for each model and each dataset. Note that the total
number of iterations we ran DGP models was way less than the total number of iterations we ran
using DLC. For example, we initialized DLC-ours from DLC after 200k; then initialized DGP using
DLC-ours after 6k. Equivalently, we can assume that we initialized DGP using DLC after 206k
iterations and ran another 80k (8k x 10) iterations with batch size 1. Thus, we ran about 280k
iterations in total for DGP while we ran 1m (1,000,000) iterations for DLC.

Results are consistent across datasets: DGP and DGP-spatial achieve similar performance across
all five datasets, but DGP has smoother traces; each tends to outperform DGP-semi, which in turn
outperforms either implementation of DLC. We also provide full videos for the comparisons of 5
traces.
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Dataset Model Initialization
Number of

Batch size
iterations

mouse-wheel

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 86k 1
DGP-semi DLC-ours 6k 8k 10

DGP-spatial DLC-ours 6k 8k 10
DGP DLC-ours 6k 8k 10

mouse-reach

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 31k 1
DGP-semi DLC-ours 5k 5k 5

DGP-spatial DLC-ours 5k 5k 5
DGP DLC-ours 5k 5k 5

fly-run

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 185k 1
DGP-semi DLC-ours 5k 18k 10

DGP-spatial DLC-ours 5k 18k 10
DGP DLC-ours 5k 18k 10

twomice-top-down

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 114k 1
DGP-semi DLC-ours 2k 12k 10

DGP-spatial DLC-ours 2k 12k 10
DGP DLC-ours 2k 12k 10

fish-swim

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 170k 1
DGP-semi DLC-ours 2k 17k 10

DGP-spatial DLC-ours 2k 17k 10
DGP DLC-ours 2k 17k 10

Table S4: Experimental setup for each dataset and each model. For DLC, we initialized it with a
pre-trained ResNet from ImageNet and ran 1m iterations using 1 batch stochastic gradient descent
(sgd) for all datasets. For the mouse-wheel dataset, we initialized DLC-ours from DLC after 200k
iterations and ran it for 86k iterations with batch size 1. We initialized DGP-semi, DGP-spatial, and
DGP from DLC-ours after 6k iterations and ran each for another 8k iterations with batch size 10.
Likewise, we ran the other four datasets correspondingly.
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Figure S3: Comparing DeepLabCut (DLC) versus Deep Graph Pose (DGP) on the mouse reaching
dataset from [4]. Conventions and conclusions as in Figure 2.
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Figure S4: Comparing DeepLabCut (DLC) versus Deep Graph Pose (DGP) on the fly ball-turning
dataset from [32]. Conventions and conclusions as in Figure 2.
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Figure S5: Comparing DeepLabCut (DLC) versus Deep Graph Pose (DGP) on the twomice-top-view
dataset with two mice. Conventions and conclusions as in Figure 2.
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Figure S6: Comparing DeepLabCut (DLC) versus Deep Graph Pose (DGP) on the swimming fish
dataset from [33]. Conventions and conclusions as in Figure 2.
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